3.940 \(\int \frac{1}{x (1+x^4)^{3/2}} \, dx\)

Optimal. Leaf size=28 \[ \frac{1}{2 \sqrt{x^4+1}}-\frac{1}{2} \tanh ^{-1}\left (\sqrt{x^4+1}\right ) \]

[Out]

1/(2*Sqrt[1 + x^4]) - ArcTanh[Sqrt[1 + x^4]]/2

________________________________________________________________________________________

Rubi [A]  time = 0.0111564, antiderivative size = 28, normalized size of antiderivative = 1., number of steps used = 4, number of rules used = 4, integrand size = 13, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.308, Rules used = {266, 51, 63, 207} \[ \frac{1}{2 \sqrt{x^4+1}}-\frac{1}{2} \tanh ^{-1}\left (\sqrt{x^4+1}\right ) \]

Antiderivative was successfully verified.

[In]

Int[1/(x*(1 + x^4)^(3/2)),x]

[Out]

1/(2*Sqrt[1 + x^4]) - ArcTanh[Sqrt[1 + x^4]]/2

Rule 266

Int[(x_)^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Dist[1/n, Subst[Int[x^(Simplify[(m + 1)/n] - 1)*(a
+ b*x)^p, x], x, x^n], x] /; FreeQ[{a, b, m, n, p}, x] && IntegerQ[Simplify[(m + 1)/n]]

Rule 51

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> Simp[((a + b*x)^(m + 1)*(c + d*x)^(n + 1
))/((b*c - a*d)*(m + 1)), x] - Dist[(d*(m + n + 2))/((b*c - a*d)*(m + 1)), Int[(a + b*x)^(m + 1)*(c + d*x)^n,
x], x] /; FreeQ[{a, b, c, d, n}, x] && NeQ[b*c - a*d, 0] && LtQ[m, -1] &&  !(LtQ[n, -1] && (EqQ[a, 0] || (NeQ[
c, 0] && LtQ[m - n, 0] && IntegerQ[n]))) && IntLinearQ[a, b, c, d, m, n, x]

Rule 63

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> With[{p = Denominator[m]}, Dist[p/b, Sub
st[Int[x^(p*(m + 1) - 1)*(c - (a*d)/b + (d*x^p)/b)^n, x], x, (a + b*x)^(1/p)], x]] /; FreeQ[{a, b, c, d}, x] &
& NeQ[b*c - a*d, 0] && LtQ[-1, m, 0] && LeQ[-1, n, 0] && LeQ[Denominator[n], Denominator[m]] && IntLinearQ[a,
b, c, d, m, n, x]

Rule 207

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> -Simp[ArcTanh[(Rt[b, 2]*x)/Rt[-a, 2]]/(Rt[-a, 2]*Rt[b, 2]), x] /;
 FreeQ[{a, b}, x] && NegQ[a/b] && (LtQ[a, 0] || GtQ[b, 0])

Rubi steps

\begin{align*} \int \frac{1}{x \left (1+x^4\right )^{3/2}} \, dx &=\frac{1}{4} \operatorname{Subst}\left (\int \frac{1}{x (1+x)^{3/2}} \, dx,x,x^4\right )\\ &=\frac{1}{2 \sqrt{1+x^4}}+\frac{1}{4} \operatorname{Subst}\left (\int \frac{1}{x \sqrt{1+x}} \, dx,x,x^4\right )\\ &=\frac{1}{2 \sqrt{1+x^4}}+\frac{1}{2} \operatorname{Subst}\left (\int \frac{1}{-1+x^2} \, dx,x,\sqrt{1+x^4}\right )\\ &=\frac{1}{2 \sqrt{1+x^4}}-\frac{1}{2} \tanh ^{-1}\left (\sqrt{1+x^4}\right )\\ \end{align*}

Mathematica [C]  time = 0.0046358, size = 26, normalized size = 0.93 \[ \frac{\, _2F_1\left (-\frac{1}{2},1;\frac{1}{2};x^4+1\right )}{2 \sqrt{x^4+1}} \]

Antiderivative was successfully verified.

[In]

Integrate[1/(x*(1 + x^4)^(3/2)),x]

[Out]

Hypergeometric2F1[-1/2, 1, 1/2, 1 + x^4]/(2*Sqrt[1 + x^4])

________________________________________________________________________________________

Maple [A]  time = 0.013, size = 21, normalized size = 0.8 \begin{align*}{\frac{1}{2}{\frac{1}{\sqrt{{x}^{4}+1}}}}-{\frac{1}{2}{\it Artanh} \left ({\frac{1}{\sqrt{{x}^{4}+1}}} \right ) } \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(1/x/(x^4+1)^(3/2),x)

[Out]

1/2/(x^4+1)^(1/2)-1/2*arctanh(1/(x^4+1)^(1/2))

________________________________________________________________________________________

Maxima [A]  time = 1.04491, size = 46, normalized size = 1.64 \begin{align*} \frac{1}{2 \, \sqrt{x^{4} + 1}} - \frac{1}{4} \, \log \left (\sqrt{x^{4} + 1} + 1\right ) + \frac{1}{4} \, \log \left (\sqrt{x^{4} + 1} - 1\right ) \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/x/(x^4+1)^(3/2),x, algorithm="maxima")

[Out]

1/2/sqrt(x^4 + 1) - 1/4*log(sqrt(x^4 + 1) + 1) + 1/4*log(sqrt(x^4 + 1) - 1)

________________________________________________________________________________________

Fricas [B]  time = 1.47157, size = 140, normalized size = 5. \begin{align*} -\frac{{\left (x^{4} + 1\right )} \log \left (\sqrt{x^{4} + 1} + 1\right ) -{\left (x^{4} + 1\right )} \log \left (\sqrt{x^{4} + 1} - 1\right ) - 2 \, \sqrt{x^{4} + 1}}{4 \,{\left (x^{4} + 1\right )}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/x/(x^4+1)^(3/2),x, algorithm="fricas")

[Out]

-1/4*((x^4 + 1)*log(sqrt(x^4 + 1) + 1) - (x^4 + 1)*log(sqrt(x^4 + 1) - 1) - 2*sqrt(x^4 + 1))/(x^4 + 1)

________________________________________________________________________________________

Sympy [B]  time = 1.87887, size = 87, normalized size = 3.11 \begin{align*} \frac{x^{4} \log{\left (x^{4} \right )}}{4 x^{4} + 4} - \frac{2 x^{4} \log{\left (\sqrt{x^{4} + 1} + 1 \right )}}{4 x^{4} + 4} + \frac{2 \sqrt{x^{4} + 1}}{4 x^{4} + 4} + \frac{\log{\left (x^{4} \right )}}{4 x^{4} + 4} - \frac{2 \log{\left (\sqrt{x^{4} + 1} + 1 \right )}}{4 x^{4} + 4} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/x/(x**4+1)**(3/2),x)

[Out]

x**4*log(x**4)/(4*x**4 + 4) - 2*x**4*log(sqrt(x**4 + 1) + 1)/(4*x**4 + 4) + 2*sqrt(x**4 + 1)/(4*x**4 + 4) + lo
g(x**4)/(4*x**4 + 4) - 2*log(sqrt(x**4 + 1) + 1)/(4*x**4 + 4)

________________________________________________________________________________________

Giac [A]  time = 1.17101, size = 46, normalized size = 1.64 \begin{align*} \frac{1}{2 \, \sqrt{x^{4} + 1}} - \frac{1}{4} \, \log \left (\sqrt{x^{4} + 1} + 1\right ) + \frac{1}{4} \, \log \left (\sqrt{x^{4} + 1} - 1\right ) \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/x/(x^4+1)^(3/2),x, algorithm="giac")

[Out]

1/2/sqrt(x^4 + 1) - 1/4*log(sqrt(x^4 + 1) + 1) + 1/4*log(sqrt(x^4 + 1) - 1)